AC= 6β2 cm. Segitiga ACH merupakan segitiga sama sisi maka titik P titik tengah AH. AP = 1/2 (AH) AP = 1/2 (6β2) AP = 3β2 cm. Dengan demikian, kita bisa mencari panjang CP. CP = β(AC2 - AP2) CP = β((6β2)2 - (3β2)2) CP = β((36.2) - (9.2)) CP = β(72 - 18) CP = β54 CP = β(9 x 6) CP = 3β6 cm
ο»ΏKelas 12 SMADimensi TigaJarak Bidang ke BidangSebuah kubus memiliki panjang rusuk 2 cm. Titik P dan Q masing-masing terletak di tengah tengah AE dan CG. Tentukan jarak bidang PFH dan QBD !Jarak Bidang ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0116Diketahui sebuah balok dengan panjang 15 cm, le...0057Diketahui sebuah balok PORS. TUVW dengan panjang 15 cm, l...0146Pada kubus ABCD EFGH dengan panjang rusuk 4 cm, titik-tit...0413Persamaan garis singgung lingkaran x^2+y^2-4x-6y-3=0 yang...Teks videoDisini kita pakai soal tentang dimensi tiga jika menemukan soal seperti ini lihat dulu nih bentuk Apa yang diketahui pada soal diketahui pada soal adalah kubus abcd efgh seperti ini dikatakan memiliki panjang rusuk 2 cm kemudian Titik P dan Q masing-masing terletak di tengah-tengah ae dan CG tipe a di tengah-tengah ae ke sini ada P dan Q di tengah-tengah CG di sini yuk. Tentukan jarak bidang pfh dan q, b. Nah kita sambungkan dulu nih titik-titiknya pfh. Berarti nah ini PSHT sekarang kita gambar yang q b d untuk menentukan jarak antara dua bidang tangkap pertama adalah kita gambar bidang yang memotong tegak lurus di A dan q b bidang itu adalah bidang acg gambar Lalu kita garis kan Gimana sih si bidang acg ini memotong pfh dan q, b. Berarti untuk yang Tefa Dia memotong di sini kata garis ke situ Kemudian untuk yang q b d g Beti kata hari ke setelah itu jarak antara kedua bilangan itu adalah Jarak tegak lurus dari garis P F ke garis PV teman-teman dan kita nama ini titik tengah yang atas adalah x adalah y maka jaraknya adalah PX ke cuy caranya tarik tegak lurus yang ke warnain warna hitam ya tegak lurus kemudian kita sekarang keluarkan segitiga yang mengandung titik-titik tadi yaitu segitiga X chuuya tawarkan segitiga kira-kira kalau gitu kalau di dalam kubus Beti tinggal kita hubungkan nilai x dan y kemudian X dan Q Nonton Pasti nggak kalau PX yaitu adalah rusuk kubus dari kertas kubusnya 2 berarti aksi adalah 2 kemudian kalau kita lihat itu = XQ karena Q kan ada di tengah-tengah QC di belakang adalah pusat atas dan ia adalah pusat alas sehingga dia adalah segitiga sama kaki maka X Q = Q tapi kita belum tahu nih kayak mana cara mencarinya kita keluarkan segitiga-segitiga y c segitiga siku-siku siku-siku di c tegak lurus kakinya itu kan adalah setengah dari rusuk BC 1 AC adalah diagonal bidang tapi dibagi 2 untuk teman-teman yang belum tahu agar lebih mudah jika terdapat rusuk dengan besar cm pada kubus maka diagonal bidangnya adalah a β 2 cm dan diagonal ruangnya adalah β 3 cm sehingga karena itu adalah setengah dari rusuk S Tengah dari diagonal bidang arti D setengah dikali 2 akar 2 itu akar 2 dapatkan Q dengan phytagoras y kuadrat ditambah y kuadrat berarti 2 ditambah 1 artinya ya Q = β 3 cm. Setelah dapat giginya berarti kita tulis di sini x akar 3 dan kakinya pun akar 3 kalau kita misalkan titik ini Ada titik n s sini ya nanti kamu mencari XN ini. Berapa ini adalah jarak didalamnya langkah berikutnya adalah kita cari X M dengan menggunakan phytagoras baik dari segi tiga siku-siku yang kiri maupun yang kanan berarti kau dan segitiga yang sebelah kiri x kuadrat dikurang g n kuadrat X dari segitiga yang kanan x kuadrat dikurang Q kuadrat berarti 4 dikurang a kuadrat = 3 min Kenapa ini adalah a ini berarti akar 3 min ini kita bisa kan tadi ya akar 3 min a kuadrat Halo ini kalau kita pindahkan jadi 1 Min a kuadrat = min 3 min 2 akar 3 cos a kuadrat sehingga B Min a kuadrat = min 3 + 2 akar 3 dan a kuadrat kita pindahkan ruasnya matriks 1 min 3 + 2 a β 3 sehingga 4 = 2 β 3 β 3 = 2 = 2 per akar 3 cm karena kita mau cari adalah x n nya jadi kita keluarkan segitiga hanya yang XL aja kita hapus dulu segitiga y aksen atau ini aku tebelin G tegak lurus Tadi hanya adalah 2 per akar 3 Sisinya adalah 2 maka F aksen kuadrat = X min Sin kuadrat x kuadrat adalah 4 dikurang 4 per 3 = 8 per 3 maka F aksen = 2 akar 2 per akar 3 Jangan lupa kita rasionalkan akar 3 ya teman-teman lainnya menjadi x akar 3 per akar 3 atau 2 akar 6 per 3 adalah jawabannya sampai jumpa pada soal yang lainnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul 2 Menentukan jarak antar titik pada bangun kubus, balok dan limas menggunakan konsep theorema Pytagoras; 3. Menyelesaikan soal jarak antar titik dalam ruang pada kehidupan sehari-hari. B. KEGIATAN PEMBELAJARAN I. Pendahuluan Sintak Model Uraian Kegiatan Rencana Waktu Stimulation (pemberian rangsangan) 1. Guru mengucapkan salam 2. MatematikaGEOMETRI Kelas 12 SMADimensi TigaJarak Bidang ke BidangSebuah kubus memiliki panjang rusuk 2 dm. Terdapat titik P dan Q yang masing-masing terletak di tengah-tengah AE dan CG. Tentukan jarak bidang PHF dan QBD. H G X E F 1 Q P N 1 D C Y 2 A 2 B Gambar KubusJarak Bidang ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0116Diketahui sebuah balok dengan panjang 15 cm, le...Diketahui sebuah balok dengan panjang 15 cm, le...0057Diketahui sebuah balok PORS. TUVW dengan panjang 15 cm, l...Diketahui sebuah balok PORS. TUVW dengan panjang 15 cm, l...0146Pada kubus ABCD EFGH dengan panjang rusuk 4 cm, titik-tit...Pada kubus ABCD EFGH dengan panjang rusuk 4 cm, titik-tit...0413Persamaan garis singgung lingkaran x^2+y^2-4x-6y-3=0 yang...Persamaan garis singgung lingkaran x^2+y^2-4x-6y-3=0 yang... SEORANGPENGGUNA TELAH BERTANYA π Kubus abcd. efgh mempunyai panjang rusuk 2 satuan. titik o adalah titik potong diagonal pada bidang bcfg. jarak titik o ke bidang bceh adalah INI JAWABAN TERBAIK π Jawaban yang benar diberikan: keisyha79 Jarak titik O ke bidang BCHE adalah 1 satuan. Kubus adalah bangun ruang tiga dimensi yang tersusun [] Kelas 12 SMADimensi TigaJarak Bidang ke BidangSebuah kubus memiliki panjang rusuk 6 cm Tentukan jarak bidang BDE dan CFHJarak Bidang ke BidangDimensi TigaGEOMETRIMatematikaRekomendasi video solusi lainnya0116Diketahui sebuah balok dengan panjang 15 cm, le...0057Diketahui sebuah balok PORS. TUVW dengan panjang 15 cm, l...0146Pada kubus ABCD EFGH dengan panjang rusuk 4 cm, titik-tit...0413Persamaan garis singgung lingkaran x^2+y^2-4x-6y-3=0 yang...Teks videoPada soal dikatakan ada kubus abcd efgh dan yang ditanya adalah jarak bidang bde, dan cfh pertama-tama kita gambar terlebih dahulu kubus dan bidang sebenarnya bidangnya berbentuk segitiga sama sisi di mana memiliki tiga sudut sama sama setiap Sisinya adalah diagonal sisi berat semua untuk lebih mudah membuat siswa alisasi kan bidang-bidangnya sebagai kita ubah saja kita tukar posisi titik A dan C dan titik titik lainnya sehingga menjadi seperti ini. Perhatikan cara menulis titiknya di titik A B C D Memutar dan diatas titik adalah titik e f g juga memutar dengan catatan titik a pasangannya pasti titik e ke titik B pasti titik f dan seterusnya dari seni menggambar bidangnya bidang bdg dan cfh karena bidang berbentuk segitiga sebaiknya kita membuat garis bantu Kita juga harus membuat garis tengah. dari bidang segitiga-segitiga ini sehingga kita akan mendapat titik p dan titik Q garis bentuk bentuk jajar genjang jajar genjang p q, jarak dua bidang adalah panjang dari satu garis lurus yang tegak lurus terhadap kedua bidangnya kita buat garis QR tegak lurus terhadap bidang bdg dan cfh untuk menjadi kita perlu mencari jajargenjang di sini kita bisa tarik garis yang berada di tengah-tengah kubus sehingga kita dapat tinggi dari jajar genjang= panjang A dan a merupakan rusuk berarti panjang P = 6 cm lagu Bila diperhatikan adalah bagian dari diagonal sisi c adalah setengah dari C A atau diagonal sisi adalah panjang rusuk dikali akar 2 = akar 2 cm maka panjang CP adalah setengah dari β 2 = 3 β 2 cm sini sudah terbentuk segitiga siku-siku ABC untuk mencari Q C kita tinggal menggunakan teorema Pythagoras dimana nilai You C kuadrat = q b kuadrat ditambah BC kuadrat = kuadrat berarti 6 kuadrat berarti 36 + BC kuadrat yaitu 3 akar 2 kuadrat berarti 9 dikali 2 per 18 = 36 + 18 54 adalah akar dari 54 54 bila difaktorkan adalah hasil kali 9 dikali 69 adalah 3 dikali 3 berarti bisa dikeluarkan dari β 3 β 6 cm di sini jajar genjang nya adalah jajargenjang beraturan sehingga You are juga pasti panjangnya 3 akar 2 dan panjangnya 36 untuk menjadi QR dapat kita lakukan dengan cara * sama dengan Kali Pepe ini tahu dari mana ini adalah rumus luas jajar genjang yaitu alas dikali tinggi tinggi yang di ruas kanan pas nya disini kita masukkan saja nilai-nilai yang sudah kita dapat QR itulah yang kita cari di kali efek 3 akar 6 = Q P itu 6 dikali CP itu 3 akar 2 di sini bisa kita coret 3 dengan 6 akar 2 juga bisa kita coret dengan β 6 sehingga menjadi akar 3 disini kita kalikan kedua ruas dengan 1 per akar 3 sehingga kita dapat 6 per akar 3 kita rasional kita dapat 6 per 3 akar 3 = 2 x akar 3 Cm kita sudah dapat panjang QR maka inilah. jarak bidang bdhf dan cfh yaitu 2 akar 3 cm selesai sampai berjumpa di Pertanyaan selanjutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul